Исследование p, ρ, T, x -зависимостей и энергетических характеристик системы вода-1-пропанол

Б. К. Османова, Э. А. Базаев, А. Р. Базаев и А. Б. Алхасов

Институт проблем геотермии и возобновляемой энергетики – филиал ОИВТ РАН,

ул. Шамиля д.39а, Махачкала, Дагестан 367030, Россия

E-mail: badji@mail.ru

Статья поступила в редакцию 30 ноября 2023 г.

Аннотация. Приведены новые p, ρ, T, x -зависимости системы вода-1-пропанол, содержащей 0.1 мольной доли 1-пропанола в однофазной (жидкой, паровой) области, на линии кривой равновесия фаз жидкость-пар, в критической и сверхкритической областях в диапазоне по: температуре 403.15–673.15 К, плотности 31–712 кг/м³ и давлению до 55 МПа, описанные термическим уравнением вириального вида со средней относительной погрешностью 1.2%. Проведен сравнительный расчет цикла Ренкина для паротурбинной установки на воде и на смеси вода-1-пропанол для различных составов x в одинаковых термобарических условиях и установлено, что термический и эффективный КПД цикла Ренкина для смеси, содержащей x = 0.1 мольные доли 1-пропанола, принимают максимальные значения. https://doi.org/10.33849/2023408

1. ВВЕДЕНИЕ

Эффективность энергетических установок, в частности преобразователей тепловой энергии в электрическую, зависит не только от конструкции их тепломеханического оборудования и выбора термодинамического цикла, но и от полноты использования данных о теплофизических свойствах рабочего вещества (тела) в широком диапазоне параметров состояния [1]. Теплофизические свойства воды, основного рабочего тела паротурбинных установок (ПТУ), исследованы подробно и для инженерных расчетов рекомендована Международная система уравнений воды и водяного пара [2]. Как правило, диапазон рабочих температур обычных ПТУ находится в критической области, определяемой критической точкой термодинамической поверхности. Критическая область индивидуального рабочего вещества неизменна и определяется его критическими параметрами, например, воды $T_k = 647.096, p_k = 22.06,$ $ho_k = 321.96 \, \, {
m kr/m^3}$. А критическая область смеси, образованной смешением жидкостей, зависит от ее состава, характеризующегося значением мольной доли 1-пропанола и определяется критической линией на термодинамической поверхности [3].

В работе [4] обоснована эффективность использования водоаммиачной смеси в качестве рабочего вещества преобразователей тепловой энергии в электрическую. Как утверждают авторы, преимущество смесевых рабочих веществ по сравнению с индивидуальными состоит в возможности изменить диапазон рабочих температур энергоустановок путем подбора их взаимно растворяющихся компонентов с различными критическими температурами и изменением состава. Это позволяет, во-первых, использовать серийные энергоустановки для преобразования тепловой энергии источников с различными температурами, и во-вторых, унифицировать часть тепломеханического оборудования преобразователей, что экономически целесообразно.

2. ОПИСАНИЕ РАБОТЫ

2.1. Экспериментальные p, ρ, T, x -измерения

В работе [5] на основе экспериментальных p, ρ, T, x зависимостей системы вода—1-пропанол для x = 0.2, 0.5, 0.8 нами было показано, что эффективный КПД

Рисунок 1. Изохоры зависимости давления от температуры смеси вода-1-пропанол при x = 0.1.

Таблица 1. Значение критических параметров смеси вода-1-пропанол.

	T_k, \mathbf{K}	$p_k, M\Pi$	а $ ho_k$, кг/м ³
0.0	647.09	$6\ 22.046$	321.96
0.1	620.05	18.37	313.39
0.2	598.15	15.10	306.50
0.5	557.15	9.50	291.00
0.8	542.15	6.47	280.00
1.0	536.85	5.23	273.22

ПТУ на смеси вода–1-пропанол при x = 0.2 максимален и составляет 21% (на воде 18.7%). С целью уточнения этого результата в данной работе нами проведены p, T и p, ρ, T, x -измерения этой смеси для x = 0.1(рисунки 1, 2).

Из таблицы 1 и рисунков 3–5 видно, что изменением состава смеси можно регулировать ее критические параметры и подбирать оптимальный диапазон рабочих температур энергоустановки.

Рисунок 2. Изотермы зависимости давления от плотности смеси вода-1-пропанол при x = 0.1.

Рисунок 3. Зависимость давления от плотности системы вода-1-пропанол на линии сосуществования фаз для различных значений состава.

Рисунок 4. Фазовая диаграмма изотерм зависимости давления от состава системы.

Рисунок 5. Критическая кривая систем вода-1-пропанол.

Таблица 2. Коэффициенты уравнения (2) для смеси вода-1-пропанол, x = 0.1

$a_{10} = 4.145878882073635$	$a_{11} {=} {-}6.514066127627685$
$a_{12}{=}0.852098672593587$	$a_{20} \!=\! -3.9760150894361046$
$a_{21}{=}5.236204980617351$	$a_{22} {=} {-} 0.3403921950316989$
$a_{30} {=} 0.731379646970635$	$a_{31} \!=\! -0.4872544024484926$
$a_{32} \!=\! -0.07777441939988179$	
$a_{40}{=}0.8365239557861639$	$a_{41} {=} {-} 1.3876797635846367$
$a_{50} \!=\! -0.3642302248361685$	$a_{51}{=}0.6373404835574512$
$a_{60}{=}0.03180976629916075$	$a_{61} \!=\! -0.07116716006374398$

2.2. Описание экспериментальных

 p,ρ,T,x -зависимостей полиномиальным уравнением состояния

Зависимость давления от плотности и температуры $p = f(\rho, T)_x$ описана термическим уравнением вириального вида — разложением фактора сжимаемости $Z = (p/RT\rho_m)_x$ в ряды по степеням приведенной плотности и приведенной температуры:

$$Z = p/RT\rho_m = 1 + \sum_{i=1}^{m} \sum_{j=0}^{n_i} a_{ij} \varpi^i / \tau_j,$$
(1)

откуда

$$p = RT\rho_m \left[1 + \sum_{i=1}^m \sum_{j=0}^{n_i} a_{ij} \varpi^i / \tau_j \right], \qquad (2)$$

где ρ_m — молярная плотность (моль/м³); $\varpi = \rho/\rho_k$, $\tau = T/T_k$ — приведенная плотность и приведенная температура соответственно; ρ_k , T_k — критическая плотность и критическая температура; $R = 8.314 \text{ Дж}/(\text{моль}\cdot\text{K})$ — универсальная (молярная) газовая постоянная. Коэффициенты уравнения, определенные обобщенным методом наименьших квадратов [6], приведены в таблице 2. Среднее относительное отклонение рассчитанных значений давления по уравнению (2) от экспериментальных составляет 1.2% (рисунок 6).

С помощью уравнения (2) получены необходимые для расчета энергетических характеристик системы вода-1-пропанол значения энтальпии и энтропии

Рисунок 6. Относительное отклонение расчетных величин давления от экспериментальных для смеси вода–1-пропанол для x = 0.1.

Рисунок 7. Изотермы зависимости энтропии от состава смеси вода–1-пропанол $\rho_k = 10~{\rm kr/m}^3$.

Рисунок 8. Изотермы зависимости энтальпии от состава смеси вода-1-пропанол $\rho_k = 10 \ \mathrm{kr}/\mathrm{m}^3$.

в жидкой и паровой фазах, на линии сосуществования фаз, в околокритическом и сверхкритическом состояниях (рисунки 7, 8).

Таблица 3. Значения КПД для цикла с водой и со смесью вода-1-пропанол.

Рабочее вещество	x = 0	x = 0.1	x = 0.2	x = 0.5	x = 0.8
Термическое КПД Внутреннее КПД Эффективный КПД	$24.4 \\ 21.3 \\ 18.7$	$34.7 \\ 30.2 \\ 26.5$	$27.6 \\ 23.9 \\ 21$	$22.9 \\ 19.7 \\ 17.2$	$20.9 \\ 17.8 \\ 15.7$

2.3. Энергетическая эффективность смеси вода-1-пропанол

Проведен сравнительный расчет циклов на воде и на смесях вода–1-пропанол по методике из работы [7] в одинаковых условиях (давление и температура пара на входе в турбину $p_1 = 16$ МПа и $T_1 = 623.15$ К; температура пара в конденсаторе $T_2 = 403.15$ К; КПД парового котла $\eta = 0.91$; внутренний относительный КПД турбины $\eta_{oi} = 0.88$; внутренний относительный КПД насоса $\eta_{oi}^H = 0.85$; механический КПД $\eta^M = 0.99$; КПД электрического генератора $\eta^G = 0.98$).

Как видно из рисунка 9, при одинаковых термобарических условиях (623.15 К и 16 МПа) водяной пар насыщенный, а смеси воды с 1-пропанолом находятся в сверхкритической области (таблица 2). Результаты расчета приведены в таблице 3 и на рисунке 10.

Термический и эффективный КПД ПТУ на смеси вода–1-пропанол растут с ростом концентрации 1-пропанола, и достигают максимума при x = 0.1, при дальнейшем росте концентрации КПД плавно уменьшаются. Возможно, это связано с тем, что критическая кривая системы вода–1-пропанол имеет выпуклую форму (см. рисунок 5), что в свою очередь можно объяснить структурными особенностями данной системы.

3. ЗАКЛЮЧЕНИЕ

Таким образом, замещение воды смесью вода–1-пропанол со значением x до 0.1 в циклах ПТУ позволяет:

- изменением состава понизить диапазон рабочих температур установки, что оправдано с точки зрения энергосбережения;
- 2. увеличить термический и эффективный КПД;
- унифицировать часть тепломеханического оборудования энергоустановок, что экономически целесообразно.

Рисунок 9. Т-Ѕ диаграмма цикла паротурбинной установки, совершаемого водой и смесями вода-1-пропанол.

Рисунок 10. Зависимость термического КПД и эффективного КПД ПТУ от состава смеси вода-1-пропанол.

СПИСОК ЛИТЕРАТУРЫ

- 1. Новиков И И 1975 Уравнения состояния газов и жидкостей (Москва: Наука)
- 2. Dooley R B 1997 Iapws industrial formulation 1997 for the thermodynamic properties of water and steam *Preprint* (Electric Power Research Institute. Palo Alto. CA 94304. USA.)
- Osmanova B K, Bazaev A R and Bazaev E A 2019 Journal of Phisics: Conf.Series 99 1385-1393
- 4. Васильев В А, Крайнов А В и Говорков И Г 1996 Теплоэнергетика 5 27-32
- Alhasov A B, Bazaev A R, Bazaev E A and Osmanova B K 2017 Journal of Physics Conference Series 1 891–896
- 6. Бахвалов Н С, Жидков Н П и Кобельков Г М 1975 *Чис*ленные методы (Москва: Наука)
- Александров А А 2006 Термодинамические основы циклов теплоэнергетических установок (Москва: Издательский дом МЭИ)