Пинч-эффект в жидкометаллической системе с полусферическими электродами

С. В. Киселева^{1,2} и И. О. Тепляков¹

¹ Объединенный институт высоких температур РАН, Ижорская ул., 13, стр.2, Москва

125412, Россия

² Московский энергетический институт (технический университет), Красноказарменная ул., 14, Москва 111250, Россия

E-mail: igor.teplyakov@mail.ru

Статья поступила в редакцию 24 октября 2023 г.

Аннотация. Исследуется явление пинч-эффекта, заключающееся в деформации поверхности жидкого проводника под действием электромагнитной силы. Рассмотрена система с эвтектическим сплавом In-Ga-Sn между полусферическими электродами. Представлены экспериментальные и расчетные значения тока, при которых происходит отрыв жидкости и возникновение разряда, в зависимости от диаметра малого электрода. Приведены результаты скоростной видеосъемки. https://doi.org/10.33849/2023305

1. ВВЕДЕНИЕ

Впервые термин "пинч-эффект" появился в статье Эдвина Нортрапа [1]. В ней описывается обнаруженное Карлом Герингом явление сжатия жидкого металла под действием электромагнитной силы. В эксперименте жидкий металл наливался в открытый контейнер, боковые стенки которого служили электродами; через жидкий металл пропускался постоянный электрический ток; при этом, в результате взаимодействия тока и создаваемого им магнитного поля, возникала электромагнитная сила, сжимающая жидкость. При увеличении тока металл поднимался вверх по электродам, а в центре контейнера возникала впадина; при определенном значении тока впадина достигала дна, что приводило к разрыву цепи; затем жидкость снова соединялась и снова разрывалась. Карл Геринг назвал это явление "пинч-эффектом".

В электрометаллургических установках, предназначенных для плавки металла электродуговым или электрошлаковым методом, возникающая электромагнитная сила приводит к различным магнитогидродинамическим явлениям, в том числе и к эффекту деформации поверхности. Мы исследуем задачу о деформацию поверхности в системе с жидким металлом между двумя полусферическим электродами.

2. ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА И МЕТОДИКА ИЗМЕРЕНИЙ

Возникновение пинч-эффекта наблюдалось в экспериментах на следующей установке (рисунок 1). Эвтектический сплав In-Ga-Sn (температура плавления 10 оС) заливался в полую медную полусферическую емкость радиусом $R_2 = 94$ мм, служащую большим электродом. По центру полусферы располагался сменный малый электрод радиусом R_1 , погруженный в расплав на глубину радиуса. В экспериментах использовались электроды с диаметрами 0.55–6.5 мм. Электрический ток I подавался на электроды от источника постоянного тока, разработанного на основе трехфазного шестиполупериодного выпрямителя Ларионова. Схема выпрямителя Ларионова обеспечивает постоянный ток с пульсациями ~13%. Электрический ток создает магнитное поле B. Возникающая сила $F = J \times B$, направленная к оси по-

лусферы, приводит металл в движение (рисунок 2(a)), вызывая электровихревое течение (J — плотность тока) [2]. С увеличением тока площадь контакта электрода с металлом уменьшается (рисунок 2(b)) и по достижении некоторого критического значения тока металл полностью отжимается от электрода, зажигается разряд, ток падает (рисунок 2(a)). Соответственно уменьшается электромагнитная сила, поверхность жидкого металла начинает возвращаться в свое исходное положение (рисунок 2(a)). Далее процесс циклически повторяется, приводя к колебаниям поверхности. Значение силы тока, при котором возникает первая электрическая дуга, назовем критическим.

Поскольку электровихревое течение чрезвычайно чувствительно к внешнему магнитному полю [3], для компенсации осевой составляющей магнитного поля Земли использовалась система из катушек Максвелла (в отличие от работы [4], в которой исследовалась глубина прогиба поверхности, без компенсации магнитного поля Земли). Катушки Максвелла представляют собой три кольца с током, разнесенных на известное расстояние. Такая система позволяет получить достаточно однородное магнитное поле не только по оси z, но и по радиусу r, в отличие от более распространенных катушек Гельмгольца. Подробное описание используемой системы катушек дано в [5].

Были проведены две серии экспериментов. В каждой серии использовалось пятнадцать электродов разного диаметра. Эксперименты проводились по следующей схеме: устанавливался малый электрод, опускался в жидкий металл, включалось питание и затем подаваемый ток увеличивался. При возникновении искры фиксировалось значение силы тока. После выключалась подача тока, снималась оксидная пленка с поверхности металла и все повторялось. Для каждого диаметра малого электрода проводилось по пять измерений. Вторая серия экспериментов была выполнена по той же схеме, кроме того, зависимость тока от времени записывалась с помощью АЦП. Затем строились графики для каждого измерения и определялось критическое значение тока. Пример одного такого графика представлен на рисунке 3. На нем критическое значение тока приходится на момент времени 16.5 с. С начала момента записи эксперимента увеличение тока происходило

Рисунок 1. Экспериментальная установка. 1 — большой электрод, 2 — малый электрод, 3 — токоподвод, 4 — эвтектический сплав индий-галлий-олово, 5 — источник питания, 6 — катушки Максвелла.

Рисунок 2. Схематичное представление пинч-эффекта в полусфере.

неравномерно (ток регулируется вручную и необходимо перехватывать ручку регулирования на автотрансформаторе), т.е. в эксперименте рост тока происходил в среднем медленнее, чем в численной модели, описанной ниже. На нем присутствует резкое падение тока, что совпадает с первым отрывом металла от электрола. Наивысшее значение тока до падения принималось за критическое. На рисунке критическое значение тока соответствует 520 А. Последующие пульсации тока совпадают с пульсациями поверхности металла. Также проводилась скоростная видеосъемка (960 кадр/с) образования электрической дуги, возникающей при отрыве металла от электрода. На рисунке 4 представлены кадры из видео, демонстрирующие процесс. Заметно, что разряд непостоянный, что является подтверждением пульсаций поверхности с частотой ~20-30 Гц. На рисунке 5 представлены результаты экспериментов. Заметно, что при небольших значениях диаметров малого электрода, среднее критическое значение тока увеличивается

Рисунок 3. Зависимость значения тока от времени t. Диаметр малого электрода — 4.5 мм.

Рисунок 4. Раскадровка видео деформации поверхности и возникновения разряда.

линейно, но при значении диаметра электрода 5.5 мм происходит увеличение критического тока, а также увеличение разброса в значениях. Этот момент требует дополнительного исследования.

3. МАТЕМАТИЧЕСКАЯ МОДЕЛЬ И РЕЗУЛЬТАТЫ ЧИСЛЕННОГО МОДЕЛИРОВАНИЯ

Также было проведено численное моделирование. Расчетная область приведена на рисунке 6 и включает в себя малый электрод, в котором рассчитывается плотность тока; область жидкого металла, в которой рассчитывается плотность тока; магнитное поле, скорость и область воздуха, в которой рассчитывается (но не используется) плотность тока и скорость.

В области жидкого металла и воздуха решалось двумерное нестационарное уравнение Навье–Стокса с электромагнитной силой **F** в качестве источника:

Рисунок 5. Зависимость критического значения тока от диаметра малого электрода.

Рисунок 6. Схема расчетной области.

$$\rho\left(\frac{\partial \boldsymbol{U}}{\partial t} + (\boldsymbol{U} \cdot \nabla \boldsymbol{U}\right) = -\nabla p + \rho \nu \Delta \boldsymbol{U} + \boldsymbol{F}.$$
 (1)

Для расчетов мы используем две системы координат: сферическую, в которой рассчитывается магнитное поле, и цилиндрическую, в которой рассчитывается электрический потенциал, плотность тока, скорость и доля фазы. Плотность тока проводимости, распространяющегося от малого электрода к большому, может быть найдена из выражения:

$$\boldsymbol{J} = -\sigma \nabla \Phi, \tag{2}$$

где σ — удельная проводимость металла, Φ — электрический потенциал, определяемый уравнением:

$$\nabla(\sigma \nabla \Phi) = 0. \tag{3}$$

Поскольку у нас сравнительно небольшие токи, мы использовали электродинамическое приближение, когда можно пренебречь токами, индуцированными движением жидкости. Граничное условие для потенциала на малом электроде задавалось линейной функцией от времени вида $\Phi_0 = kt$ (таким образом моделируется постепенный поворот ручки регулирования тока в эксперименте), а на большом электроде потенциал полагался равным нулю. Поскольку потенциал нарастает достаточно медленно по сравнению другими процессами, индукционные эффекты не учитывались. Плотность тока в сферической системе связана с плотностью тока в цилиндрической системе следующим образом:

$$J_{r_{sph}} = J_r \sin\theta + J_z \cos\theta. \tag{4}$$

Магнитное поле, создаваемое этим током, можно найти, решив уравнение Максвелла:

$$\nabla \times \boldsymbol{B} = \mu_0 \boldsymbol{J},\tag{5}$$

где μ_0 — магнитная постоянная.

Ротор индукции магнитного поля в сферической системе координат с ортами $\hat{r}, \hat{\theta}, \hat{\varphi}$ имеет вид:

$$\nabla \times \boldsymbol{B} = \frac{1}{r \sin \theta} \left(\frac{\partial (B_{\varphi} \sin \theta)}{\partial \theta} - \frac{\partial B_{\theta}}{\partial \varphi} \right) \hat{r} + \frac{1}{r} \left(\frac{1}{\sin \theta} \frac{\partial B_{r}}{\partial \varphi} - \frac{\partial (rB_{\varphi})}{\partial r} \right) \hat{\theta} + \frac{1}{r} \left(\frac{\partial (rB_{\theta})}{\partial r} - \frac{\partial B_{r}}{\partial \theta} \right) \hat{\varphi}.$$
 (6)

В данной задаче, из-за осевой симметрии, магнитное поле имеет только одну компоненту, т.е. $|{m B}|=B_{arphi},$ тогда:

$$\nabla \times \boldsymbol{B} = \frac{1}{r \sin \theta} \frac{\partial (B_{\varphi} \sin \theta)}{\partial \theta} \hat{r} - \frac{1}{r} \frac{\partial (rB_{\varphi})}{\partial r} \hat{\theta}.$$
 (7)

Выбрав первое слагаемое в (7) и подставив в (5), получим:

$$\frac{1}{r\sin\theta} \left(\frac{\partial (B_{\varphi}\sin\theta)}{\partial\theta} \right) = \mu_0 J_{r_{sph}},\tag{8}$$

$$B_{\varphi} = \frac{\mu_0 r}{\sin \theta} \int_0^{\theta} J_{r_{sph}} \sin \theta \, \mathrm{d}\theta \tag{9}$$

где $J_{r_{sph}}$ — радиальная компонента плотности тока в сферических координатах.

Конечные выражение для объемной электромагнитной силы силы $F = J \times B$ имеют вид:

$$F_r = -J_z B_\varphi,\tag{10}$$

$$F_z = J_r B_\varphi. \tag{11}$$

Для решения уравнения Навье–Стокса и нахождения потенциала использовался метод контрольного объема, реализованный в Ansys Fluent [6]; для определения формы поверхности использовалась VOF-модель [7]. Интеграл (9) для расчета магнитного поля вычислялся суммированием на имеющейся сетке. Последовательность расчета следующая: решается стационарное уравнение для электрического потенциала; находится распределение плотности тока; по нему находится маг-

Рисунок 7. Распределение фаз при скорости нарастания тока 500 A/с в различные моменты времени t.

нитное поле; затем с полученной электромагнитной силой решается нестационарное уравнение Навье–Стокса и уравнение для доли фазы в ячейке, при этом происходит реконструкция формы поверхности. Поскольку под действием электромагнитной силы поверхность металла деформируется, внутри каждого шага по времени процесс пересчета электрических, магнитных и гидродинамических величин необходимо повторять до обеспечения согласованности.

По данной методике был проведен расчет для малого электрода диаметром 4 мм. Скорость нарастания тока составляла 500 А/с. Мы постарались максимально увеличить скорость нарастания тока для уменьшения общего времени расчета. Поскольку в задаче требуется выполнять постоянный пересчет электромагнитных параметров (плотности тока и магнитного поля) из-за изменения формы расчетной области, что достаточно затратно в плане времени, нам пришлось ограничиться одним режимом. Минус такого подхода в том, что чем быстрее увеличивается ток, тем больше возникает возмущений поверхности, и эти возмущения могут быть неосесимметричны (см. рисунок 4) и приводить к скорейшему возникновению разряда, что не учитывается нашей двумерной постановкой. Результаты (распределение фаз в некоторые типичные моменты времени) представлены на рисунке 7. Красная область — воздух, желтая область — металл. Попадание пузырьков воздуха в металл, вероятно, связано с тем, что в расчете не учитывалась сила поверхностного натяжения.

На рисунке 8 представлена зависимость полного тока от времени. Пульсации тока начинаются при критическом токе 230 A на t = 0.43 с. В расчете, после начала пульсаций ток продолжает линейно увеличиваться, поскольку продолжается рост потенциала на подводящем электрода, а наша модель не предусматривала возникновения электрического разряда.

Рисунок 8. Расчетная зависимость тока от времени.

4. ЗАКЛЮЧЕНИЕ

Было проведено две серии экспериментов по нахождению критического значения тока. Обнаружено, что критический ток линейно увеличивается при увеличении диаметра малого электрода. Разработана расчетная модель деформации поверхности жидкого металла в полусферическом контейнере с учетом изменения электромагнитных параметров. Также проведен расчет формы поверхности по созданной модели при диаметре малого электрода 4 мм со скоростью увеличения тока 500 A/с.

Результаты экспериментов и численного моделирования качественно схожи и совпадают по порядку величины. В расчете пульсации тока начинаются при критическом токе 230 А при диаметре малого электрода равному 4 мм. В эксперименте при таком диаметре критический ток равен ~ 500 А. Такая разница в значениях может быть объяснена неполнотой модели, так как в расчете использовалась двумерная постановка и не учитывалась сила поверхностного натяжения.

Результаты исследования могут быть использованы для оптимизации работы электрометаллургических установок и сварочного оборудования.

СПИСОК ЛИТЕРАТУРЫ

- 1. Northrup E F 1907 Phys. Rev. (Series I) 24 474-497
- 2. Бояревич В В, Фрейнберг Я Ж, Шиловах Е И и Щербинин Э В 1985 Электровихревые течения (Рига: Зинатне)
- Виноградов Д А, Ивочкин Ю П и Тепляков И О 2018 Доклады Академии наук 483 24-27
- Kharicha A, Teplyakov I, Ivochkin Y, Ludwig M and Guseva A 2015 Exp. Therm. Fluid Sci. 62 192–201
- 5. Teplyakov I, Vinogradov D and Ivochkin Y 2021 Metals 11 1806
- 6. https://www.ansys.com/products/fluids/ansys-fluent
- 7. Hirt C and Nichols B 1981 Journal of Computational Physics 39 201–225