Влияние внешнего подогрева катода на характеристики стационарных вакуумных дуг с диффузной катодной привязкой

И. М. Ярцев, В. П. Полищук и Р. А. Усманов

Объединенный институт высоких температур РАН, Ижорская ул., 13, стр.2, Москва

125412, Россия

E-mail: usmanov.r@ihed.ras.ru

Статья поступила в редакцию 7 ноября 2023 г.

Аннотация. Рассмотрены разряды на металлических (гадолиний, свинец, хром), полупроводниковых (оксид церия) и смесевых (оксид церия и хром) катодах, с принципиально разными механизмами переноса заряда на их поверхности. Обсуждаются значения безразмерных параметров, определяющих скорость испарения катода и величину энергии, вложенную в поток плазмы. https://doi.org/10.33849/2023201

1. ВВЕДЕНИЕ И ПОСТАНОВКА ЗАДАЧИ

Известно, что в вакууме при достаточно большой температуре катода T_c можно реализовать дуговой разряд в парах катода с распределенной или диффузной катодной привязкой (ДКП) [1–4]. Низкая плотность тока в ДКП (1–10²) А/см² и устойчивый характер прикатодных процессов позволяют генерировать плазменные потоки катодного материала, не содержащие микрокапельной фракции. Благодаря этому разряд с ДКП обладает значительным преимуществом для различных плазменных технологий перед дугой на холодных катодах с контрагированными катодными пятнами (ККП), которая характеризуется значительным содержанием микрокапельной фракции в продуктах эрозии [4, 5].

В зависимости от материала катода разряд с ДКП может реализоваться при давлении насыщенного пара P_s свыше 1–10² Па. В известных экспериментах с ДКП требуемое значение давления P_s достигалось при температуре катода T_c свыше 1.2–2 кК [4]. Для обеспечения такой температуры нередко используют внешний, обычно электроннолучевой, подогрев катода мощностью N от ~0.1 до ~100 кВт [2–4, 6–9].

Внешний подогрев катода существенно расширяет экспериментальные и технологические возможности, например, упрощает инициацию разряда и позволяет зажечь его на веществах, которые практически не проводят ток при комнатных температурах, таких как, В [9] или CeO₂ [10]. Существенно также, что подогрев катода позволяет управлять характеристиками разряда.

В качестве основного механизма влияния подогрева на характеристики дуги можно выделить увеличение температуры катода, которое приводит к экспоненциальному росту давления насыщенного пара катодного материала и плотности потока термоэлектронов и атомов с катода. Однако, в известных работах [3, 6–9] конкретные значения температуры T_c , как правило, не приводятся, что существенно снижает информативность полученных данных. В работах [3, 6–9] влияние внешнего нагрева представлено, главным образом, как фактор, влияющий на напряжение на дуге V_a .

Общий анализ литературных данных о разряде с ДКП дан в обзоре [4]. Основной задачей данной работы являлось отдельное рассмотрение характеристик этого разряда на подогреваемых катодах из различных кристаллических материалов. Особое внимание при этом уделялось анализу данных о температуре катода T_c и о параметрах, характеризующих процессы генерации плазмообразующей среды. Кроме того, проведено сопоставление характеристик распределенного разряда на катодах из разных материалов с соответствующими характеристиками традиционных вакуумных дуг с ККП на интегрально холодных катодах.

Представленные результаты получены, в основном, после дополнительной обработки данных, полученных нами ранее [2, 4, 10–13]. При описании разрядов на катодах из Gd, CeO₂ и смеси CeO₂ + Cr были привлечены и новые данные.

В соответствии с работой [14], в качестве параметров, характеризующих условия и интенсивность генерации плазмы в вакуумных дугах, можно использовать коэффициенты электропереноса α и энергопереноса δ . Коэффициент α представляет собой отношение потока электронов в плазме I/e к потоку атомов, покидающих катод G_a/M_a :

$$\alpha = IM_a/(eG_a) \; [\Im\pi/a\pi], \tag{1}$$

где I — ток дуги, G_a — массовая скорость эрозии катода, M_a — масса атома материала катода, e — заряд электрона. Его можно вычислить, используя величину удельной эрозии катода $\beta = G_a/I$:

$$\alpha = 1,04 \times 10^{-5} \ M_0 / \beta \ [\text{эл/ат}], \tag{2}$$

где M_0 — масса атома катода в атомных единицах.

Для коэффициента δ в расчете на один поступивший с катода атом можно записать

$$\delta = \alpha e V_a (1 - V_c / V_a) \ [\Im B / a_T], \tag{3}$$

где V_c — вольтов эквивалент (ВЭ) теплового потока Q_c из прикатодной плазмы на катод: $V_c = Q_c/I$.

Отметим, что при записи уравнения (3) пренебрегли потоком тепла в анод. Отметим также, что в отличие от [14] в (3) с помощью ВЭ учитывались тепловые потери из дуги на катод, уменьшающие значения δ до 50% и более.

В соответствии с работой [14] основные характеристики плазменных потоков, генерируемых в дугах с ККП, коррелируют с величинами α и δ . В то же время конкретные данные о диапазоне этих величин для дуг с ДКП, особенно при наличии подогрева катода, практически отсутствуют. Далее, в основном, приводятся данные о разряде с ДКП и каждый раз уточняется, когда приводятся данные для других дуговых разрядов.

2. ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА, ИССЛЕДОВАННЫЕ КАТОДЫ И ОСНОВНЫЕ МЕТОДИКИ ИЗМЕРЕНИЙ

Установка и основные методики измерений подробно описаны в работах [2, 4]. Разряд зажигался в вакуумной камере, в которой давление остаточных газов не превышало 10^{-4} Па. Материал катода помещался в цилиндрический молибденовый тигель, под которым находился электроннолучевой подогреватель (ЭЛП) мощностью до 1.5 кВт. Для всех катодов, кроме свинца, использовались тигли одного размера: с внешним и внутренним диаметром 24 и 19 мм соответственно, высотой — 14 мм, и диаметром выходного отверстия 14 мм. В опытах со свинцовым катодом высота тигля была увеличена до 26 мм, а диаметр выходного отверстия уменьшен до 6 мм. Интенсивность подогрева катода, или отношение мощности ЭЛП к мощности дуги $N_n = N/(IV_a)$ изменялось от 0 до 4.

В качестве анодов использовались радиационноохлаждаемые пластины из молибдена толщиной 0.5 мм, а также водоохлаждаемые диски из нержавеющей стали. Аноды имели центральное отверстие диаметром около 15 мм для выхода плазмы. Расстояние катод–анод составляло около 30 мм.

Источником энергии служил выпрямитель с выходным напряжением 360 В и током до 250 А. Значение тока в дуге устанавливалось реостатом с водяным охлаждением. Дуга зажигалась подачей напряжения от выпрямителя на разрядный промежуток. Перед подачей напряжения катод нагревался от ЭЛП до температуры, обеспечивающей давление насыщенного пара свыше 1 Па.

Специфику прикатодных процессов в вакуумных дугах на различных катодах поясняют при помощи атом-электронного отношения S_{ae}, представляющего собой отношение плотности потоков термически испаренных атомов J_a и электронов термоэмиссии J_e , то есть $S_{ae} = J_a/J_e$ [4]. Для исследованных катодов диапазон изменения величины S_{ae} составлял восемь порядков. Минимальное значение $S_{ae} \sim 0.1$ имеет катод термоэмиссионного типа из гадолиния (Gd), значение Sae для катода из спеченного в вакууме порошка диоксида церия (CeO₂) заключается в диапазоне от ~ 0.1 до 1. Высокими значениями атом-электронного отношения характеризуются катоды из хрома $(S_{ae} \sim 10^4)$ и свинца $(S_{ae} \sim 10^7)$. Нами также исследовался катод из спеченной в вакууме механической смеси порошков Cr и CeO₂, обозначаемой далее как CeO₂ + Cr. Массовое отношение компонент CeO₂ и Cr в смеси изменялось в диапазоне от 0.5 до 1. Этот катод по величине Sae является эмиссионно неоднородным, характерный масштаб неоднородности ~ 0.1 мм определялся размером спекавшихся зерен.

Устойчивое горения разряда с ДКП удавалось получить в определенном диапазоне токов, зависящем от материала катода. При токах меньше 10–30 А разряд мог становится неустойчивым, а при токах свыше 150– 200 А могли проявляться ограничения, связанные с нагревом камеры, приводящим к увеличению давления газов в ней и, как следствие, нестабильной работе ЭЛП.

Используемые методики измерений некоторых базовых параметров в кратком виде представлены в таблице 1. В данной работе, в основном, рассматриваются режимы горения дуги, при которых не наблюдалась

Рисунок 1. Зависимость температуры катода от мощности ЭЛП для разных катодных материалов. Штриховая линия — усредненная калибровочная характеристика, т.е. зависимость T_c от N при токе I = 0.

контракция разряда на аноде, вызывающая рост напряжения V_a .

3. ДАННЫЕ О ТЕМПЕРАТУРЕ КАТОДА, НАПРЯЖЕНИИ НА ДУГЕ И О ДАВЛЕНИИ ПАРА КАТОДНОГО МАТЕРИАЛА У ПОВЕРХНОСТИ КАТОДА

В соответствии с данными на рисунке 1 увеличение мощности ЭЛП при неизменном токе дуги может приводить к росту температуры катода на 10–15%. Этот рост сопровождается экспоненциальным увеличением давления насыщенных паров катодного материала, а также скорости испарения G_a и удельной эрозии катода β . В соответствии с (1) и (3) увеличение β снижает коэффициенты интенсивности генерации плазмы α и δ в дуге, что отражается на параметрах плазмы и на характеристиках дуги, например, на напряжении V_a .

Отметим, что по данным [15] для дуги с ККП повышенная интегральная температура рабочей поверхности катода, вызванная нагревом катода дугой, также влияет на ее характеристики, например, на эрозию катода и зарядовый состав ионов плазмы. Но при этом стабильность разряда с ККП при росте интегральной температуры катода обычно существенно уменьшается.

Поскольку напряжение V_a при фиксированном токе существенно зависит от N, то, наряду с обычными вольтамперными характеристиками (BAX), важное значение для дуги с ДКП имеют зависимости V_a от N при фиксированном токе, которые можно назвать вольт-ваттными характеристиками (BBX).

Из данных рисунка 2 следует, что для дуги с ДКП на свинцовом катоде, имеющем наибольшие значения давления P_s и S_{ae} , наблюдаются возрастающие BBX, а для других исследованных катодов увеличение мощности N приводит к снижению напряжения V_a . Темп уменьшения V_a снижается с ростом N. Наибольшее

Измеряемый параметр	Методика измерения
Мощность ЭЛП $N = 0$ -1000 Вт	Ток и напряжение в высоковольтной части ЭЛП
Температура катода $T_c=\!\!1.2\!-\!\!2.4$ кК	Оптический пирометр на длине волны 0.9 нм
Эрозия или скорость испарения катода $G_a = 10^{-4} 10^{-2} \ \text{г/c}$	Взвешивание
Тепловой поток из дуги на катод $Q_c=300{-}1000~{ m Bt}$	Калибровка температуры катода по тепловому потоку ЭЛП
Температура электронов $T_e = 0.4$ –10 эВ	Одиночный зонд
Кинетическая (наиболее вероятная) энергия ионов в плазме $W_i = 5-50$ эВ	Многосеточный зонд

Таблица 1. Основные измеряемые параметры и методики.

Средний заряд ионов в плазме $Z_i=0.2$ –2e Конденсационный зонд, зарядовый состав плазмы

Рисунок 2. Зависимость напряжения дуги с ДКП от мощности ЭЛП для разных катодов. Для катода из Gd представлены величины $V_a/3$.

(на порядок) снижение напряжения наблюдается для термоэмиссионного катода из Gd, имеющего минимальные значения S_{ae} и P_s . Для других катодов напряжение V_a уменьшается в полтора–два раза.

На рисунке 3 представлен график напряжения на дуге в зависимости от давления насыщенного пара $V_a(P_s)$, построенный на основании измеренных значений T_c с использованием литературных данных о давлении пара (Cr, Pb — [16]; Gd — [11], CeO₂ — [17]). В соответствии с данными рисунка 3 зависимость $V_a(P_s)$ имеет V-образный вид с минимальным значением порядка первого потенциала ионизации атомов катодного материала. Минимум напряжения реализуется при давлении $P_s \sim 0, 1$ кПа.

Зависимости на рисунке 3 подобны зависимости напряжения пробоя газа V_b от давления газа при фиксированном размере межэлектродного промежутка (кривая Пашена) [19]. Аналогичный вид зависимостей от давле-

Рисунок 3. Зависимость напряжения дуги с ДКП от давления насыщенного пара катодного материала в режимах с подогревом и без подогрева катода. Зависимость суммы анодного и катодного падения потенциала в дуге на термоэмиссионном катоде от давления газа при I = 2 А по данным [18].

ния газа напряжений V_b и V_a известен и для дуг на накаливаемых термоэмиссионных катодах при пониженном давлении газа [20–22]. Это подтверждает, например, представленная на рисунке 3 сумма анодного и катодного падения потенциала, которая была оценена в [18] в экспериментах с дуговым разрядом на накаливаемом оксидном катоде.

На левой ветви зависимости $V_a(P_s)$, то есть при относительно малых значениях давления, расположены данные о напряжении V_a для разряда на катодах из Gd и Cr, которые уменьшаются с ростом P_s тем сильнее, чем меньше P_s . На правой ветви зависимости $V_a(P_s)$ расположены, в основном, данные о напряжении V_a для дуги на катоде из Pb, которые возрастают с ростом P_s .

В отсутствие подогрева катода (N = 0) напряжение V_a при данном значении T_c (и P_s) превышает напряжение на подогреваемом катоде. Это превышение V_a обеспечивает повышенный тепловой поток на катод $Q = IV_c$, необходимый для поддержания его заданной температуры при N = 0.

Отметим, что видом зависимости $V_a(P_s)$ в исследованном диапазоне P_s можно объяснить вид обычных ВАХ при постоянных значениях мощности ЭЛП. Например, если при N = 0, то есть в самостоятельном разряде при малых токах и значениях T_c , реализуется давление $P_s < 0.1$ кПа, то должна наблюдаться падающая часть ВАХ, а при $P_s > 0.1$ кПа или при больших токах — возрастающая. Первый случай и падающие ВАХ реализуются на катодах из Gd и Cr, второй случай и возрастающая ВАХ — на свинцовом катоде.

В общем случае при большом диапазоне изменения тока дуги, приводящем к большому изменению T_c (и P_s), можно реализовать немонотонные BAX с минимумом V_a при средних токах. Такие немонотонные BAX при постоянных N от 18 до 100 кВт с минимумом V_a от 7 до 10 В были получены в [6] на титановом катоде при токах дуги от 10 до 2000 А.

4. ДАННЫЕ О КОЭФФИЦИЕНТАХ ЭЛЕКТРО- И ЭНЕРГОПЕРЕНОСА И О ДИАПАЗОНЕ ИЗМЕНЕНИЯ ПАРАМЕТРОВ ПЛАЗМЫ В ДУГАХ С ДКП

В соответствии с (1) и (3) для определения коэффициента электропереноса α необходимы данные об удельной эрозии катода β , а для расчета коэффициента энергопереноса δ нужны данные о напряжении на дуге и ВЭ теплового потока Q_c из плазмы в катод V_c . В наших экспериментах тепловой поток Q_c измерялся при помощи калибровки катода, то есть получения зависимости температуры катода от мощности N в отсутствии дуги $T_c(N,I=0)$. Из сравнения калибровочной зависимости с аналогичной зависимостью, измеренной при наличии дуги $T_c(N,I)$ находится тепловой поток на катод Q_c при температуре T_c :

$$Q_c(T_c) = N(I = 0) - N(I),$$
(4)

где N(I = 0) и N(I) — мощность подогрева катода от ЭЛП до одинаковой температуры T_c без дуги и в дуге с током I соответственно.

Соотношение (4) справедливо, если потери энергии с катода определяются, в основном, тепловым излучением и теплопроводностью через элементы конструкции катодного тигля, а потерями тепла на испарение катодного материала можно пренебречь. Этим условиям удовлетворял разряд на катоде из гадолиния ($S_{ae} \sim 0.1$). Для разряда на хромовом катоде ($S_{ae} \sim 10^4$) при определении потока Q_c нужно было вносить сравнительно небольшую поправку на потери энергии с катода на испарение хрома. Эта поправка определялась с помощью измерения скорости испарения катода в дуге G_a . Для свинцового катода ($S_{ae} > 10^7$) игнорирование потерь энергии на испарение могло привести к качественно неверным результатам [4].

Для пояснения методики определения V_c заметим, что всем дуговым точкам на рисунке 1, которые лежат слева от калибровочной кривой, снятой при I = 0, соответствуют значения $V_c > 0$, а для точек справа от этой

Рисунок 4. Зависимость от напряжения на дуге ВЭ теплового потока на катод для вакуумных дуг в режимах без подогрева катода (N = 0) и с подогревом катода. Для дуг с ККП оценки V_c сделаны по методу [23] при использовании данных о V_a из [24].

кривой (для Gd и CeO₂ + Cr) — значения $V_c < 0$. Отрицательные величины ВЭ означают, что потери тепла на эмиссию электронов с катода превышают тепловой поток из плазмы на катод.

На рисунке 4 приведены значения ВЭ V_c в зависимости от напряжения на разряде. Из данных на этом рисунке следует, что величины V_c для всех исследованных катодов неплохо коррелируют с напряжением на дуге, а именно, с ростом V_a значения V_c увеличиваются.

При данном V_a значения V_c для вакуумной дуги с ДКП на катодах из Сг и Рb с большими значениями S_{ae} (свыше 10⁴) близки между собой. Для таких катодов отношение V_c/V_a или доля мощности, идущей на катод от всей мощности дуги возрастает с ростом V_a от 30% при $V_a = 10$ В до 50% при $V_a = 20$ В.

Для дуг на катодах термоэмиссионного типа из Gd, CeO₂ и CeO₂+Cr с малыми величинами атомэлектронного отношения $S_{ae}(\sim 0.1)$ значения V_c при данном V_a значительно ниже, что объясняется дефицитом ионного потока на катод, являющегося обычно основным источником нагрева катода [4]. При малых напряжениях $V_a < (7-9)$ В и большой интенсивности подогрева катода $N_n = N/(IV_a) > 1.5$ на таких катодах реализуются отрицательные значения ВЭ теплового потока. Это указывает на значительное термоэмиссионное охлаждение катода, связанное с большой долей термоэмиссионного тока с катода (свыше 0.9). Подобное охлаждение термоэмиссионных катодов наблюдается и в газовых дугах пониженного давления [22, 25].

Модуль значений ВЭ теплового потока V_c для порошковых катодов из CeO₂ и CeO₂+Cr в среднем не превышает 2 В, что приводит к большой погрешности и разбросу данных о V_c . Кроме того, при использованных токах менее 150 А, малые значения V_c не позволяли реализовывать дугу подогрева катода. Значения V_c сравнивались с простыми оценками $V_c = 0.4(V_a - \Phi_e/e)$, предложенными в [23] для дуги с ККП при характерных токах от 100 до 300 А (Φ_e — работа выхода электронов с катода). Для оценки V_c использовались значения Φ_e из справочника [26], а напряжения V_a — из работы [24]. Разряды с ККП рассматривались на разных металлических катодах: от легкоплавких с $V_a = 14$ В (катод из Ві) до тугоплавких с $V_a = 28 - 29$ В (катоды из W, Та и Мо).

Сравнение данных на рисунке 4 показывает, что при одинаковых напряжениях V_a значения V_c для разряда с ККП лежат в промежутке между найденными минимальными значениями для разрядов с ДКП на катоде из Gd и более высокими значениями на катодах из Cr и Pb. Отношение V_c/V_a для разрядов с ККП несколько увеличивается с ростом V_a , а среднее значение $V_c/V_a = 0.3$.

Таким образом, численно для обоих типов вакуумных дуг значения V_c во многом определяются значением V_a . При этом в разряде с ДКП на катодах термоэмиссионного типа могут быть реализованы и отрицательные значения V_c .

При определении удельной эрозии $\beta = G_a/I$ металлических катодов для дуги с ДКП использовались в основном ранее полученные [11–13] экспериментальные данные о скорости эрозии катодного материала при наличии дуги. Как установлено в [4, 11], основным механизмом эрозии катода в разряде с ДКП является термическое испарение. В этом случае величина G_a пропорциональна скорости испарения в вакуум с открытой поверхности, что в соответствии с [11, 16] позволяет записать

$$G_a = gP_s \sqrt{\frac{M_a}{2\pi k_B T_c}},\tag{5}$$

где k_B — константа Больцмана, g — эффективный коэффициент испарения катода в дуге, который по данным работы [11] при данном токе зависит от геометрии полости катодного тигля, в частности, от отношения площади выходного сечения тигля S_0 к площади поверхности катода. Для удобства использования полученные в [11–13] данные о G_a аппроксимировались линейными зависимостями вида (5).

По данным на рисунке 5 минимальная удельная эрозия катодов
 β составляла от 10^{-4} г/Кл для Gd до 10⁻² г/Кл для Рb. Максимальный коэффициент энергопереноса δ составлял от 20 эВ/ат для Pb до 4×10^3 эВ/ат для Gd. Он реализовывался в отсутствие внешнего подогрева катода. С ростом мощности значения β возрастают практически на порядок, а значения δ соответственно уменьшаются. Сильное уменьшение б должно приводить к существенному снижению параметров плазмы. Так, представленная на рисунке 5 усредненная измеренная температура электронов в плазме T_e на катоде из Gd уменьшается от 10 до 0.5 эВ, а измеренный в [27] средний заряд ионов в этой плазме при более ограниченном снижении N уменьшается с 2.4e до 1e. На свинцовом катоде уменьшение T_e при изменении мощности N, представленное на рисунке 5, менее значительно: от 1 до 0.5 эВ.

Полученные значения α и δ сравнивались с аналогичными величинами для разряда с ККП, которые были

Рисунок 5. Зависимости от мощности подогрева катода удельной эрозии β , удельного энерговклада δ , а также температуры электронов в плазме.

оценены по (1) и (3) с использованием удельной ионной эрозии катодов β_i [28], V_c из [23] и V_a из [24]. Величина β_i в [28] определялась по измеренным значениям полного ионного тока из разряда и среднего заряда ионов. Поскольку β_i меньше суммарной эрозии катода в паровой фазе [28], то полученные значения α и δ для разряда с ККП являются оценкой сверху. Погрешность оценки может достигать 20–30%.

Сравнения величин α и δ для обоих типов катодной привязки вакуумной дуги приведено на рисунке 6. Каждая точка на этом рисунке для разряда с ККП соответствует своему катодному материалу. Разные точки для разряда с ДКП на выбранном катоде соответствуют разной мощности его подогрева (рост N при фиксированном токе I уменьшает значения α и δ).

По данным рисунка 6 значения α для разряда с ДКП на Gd и Cr лежат в диапазоне изменения этих величин для разрядов с ККП на различных металлических катодах, что объясняется одинаковым уровнем удельной эрозии β .

Если использовать данные [24], для разряда с ККП рост δ от 10 до 10^2 эВ/ат для изученных катодных материалов приводит к увеличению кинетической энергии ионов W_i в плазме от 20–30 до 150 эВ, средней кратности заряда ионов Z_i от 1 до 3 и характерной температуры электронов T_e от 1.7 до 4.5 эВ.

Для разряда с ДКП на Gd по представленным в работах [4, 27] данным увеличение α приводит к росту температуры T_e от 0.5 до 10 эВ, а среднего заряда ионов от 1e до 2.4e и более. Таким образом, изменение тока и мощности подогрева катода на одном катоде из Gd приводит к получению плазмы с такими регулируемыми значениями T_e и Z_i , которые реализуются в разряде с ККП на большом наборе катодных материалов.

Повышенные значения β для разряда с ДКП на свинце существенно (на порядок величины и более) уменьшают значения α и δ по сравнению с данными для

Рисунок 6. Зависимости от коэффициента электропереноса α коэффициента энергопереноса δ для дуг с ДКП и с ККП на разных металлических катодах, кинетической энергии ионов W_i в плазме дуги с ККП, а также температуры электронов T_e для дуг с ДКП и с ККП.

других катодов. Для такого разряда температура электронов на рисунке 6 с ростом α от 0.5 до 3 увеличивается с 0.5 до 1 эВ. Для разряда с ККП на свинце характерны более высокие значения $\alpha = 12.5$ эл/ат и $T_e = 2$ эВ.

Для пояснения физической причины немонотонной зависимости V_a от P_s на рисунке 3 для разряда с ДКП отметим, что в соответствии с (2) и (5) значения α обратно пропорциональны давлению пара P_s . Исходя из этого, можно показать, что для исследованных катодов область давлений пара в минимуме V_a (от 100 до 200 Па) приближенно соответствует значениям α в области от 3 до 10 эл/ат. Убывающая левая часть зависимости V_a от P_s реализуется при $\alpha < 3$ эл/ат. Граничным значениям $\alpha_1 = 10$ эл/ат и $\alpha_2 = 3$ эл/ат соответствуют граничные значения δ_1 и δ_2 , которые можно определить из соотношения (3) и которые в среднем составляют 50 и 15 эВ/ат.

Таким образом, растущая зависимость V_a от P_s для вакуумной дуги с ДКП является следствием относительно низких значений коэффициентов $\alpha < 3$ эл/ат и $\delta < 15$ эВ/ат.

Практически важно, что существенно разные значения α и δ в разных частях зависимости $V_a(P_s)$ на рисунке 3 должны приводить к разным параметрам генерируемой плазмы, что подтверждается опытными данными [4, 27]. Так, на катоде из Gd (левая ветвь зависимости $V_a(P_s)$) температура электронов может достигать 10 эВ [4], а средний заряд ионов в плазме может превышать значения 2.4e. В то же время на свинцовом катоде (правая ветвь зависимости $V_a(P_s)$) характерные значения $T_e < 1.2$ эВ и $Z_i < 0.3e$, то есть почти на порядок меньше.

Интересно, что все данные для разрядов с ККП на рисунке 6 расположены в области $\alpha > 10$ эл/ат. В то же время дуга с ДКП на свинце при наличии подогрева ка-

тода может быть реализована при значительно меньших значениях $\alpha < 1$ эл/ат.

5. ЗАКЛЮЧЕНИЕ

Анализ представленных экспериментальных данных о влиянии мощности внешнего подогрева на характеристики вакуумной дуги с диффузной катодной привязкой (ДКП) позволяет сделать следующие выводы.

В качестве параметров, определяющих интенсивность генерации и параметры плазмы в дугах с ДКП, целесообразно использовать коэффициенты электропереноса α и энергопереноса δ . Для исследованных катодов коэффициент α изменялся от 0.5 до 150 эл/ат, а коэффициент δ — от 3 до 4×10^3 эВ/ат. Для обсуждаемого разряда указанные коэффициенты обратно пропорциональны давлению насыщенного пара катодного материала P_s при рабочей температуре катода, что обусловлено преобладающим влиянием термического испарения на величину эрозии катода.

Подогрев катода при неизменном токе приводит к росту его температуры, что сопровождается экспоненциальным ростом давления пара и соответствующим снижением коэффициентов электропереноса α и энергопереноса δ . Это снижение обуславливает уменьшение параметров плазмы, в том числе температуры электронов T_e , а также кинетической энергии W_i и среднего заряда ионов в плазменном потоке Z_i . Так, в разряде на катоде из Gd изменение мощности подогрева катода приводит к почти десятикратному изменению величин T_e и W_i и к трехкратному изменению Z_i . Мощность подогрева катода также существенно влияет на напряжение горения дуги.

При фиксированных токах получены зависимости напряжения V_a от мощности подогрева катода. На свинцовом катоде напряжение увеличивается с ростом мощности, а на остальных исследованных катодах — уменьшается.

Зависимость напряжения на дуге от давления пара P_s имеет немонотонный, V-образный вид с минимальными значениями от 6 до 12 В при давлении катодного пара порядка 0.1 кПа, что соответствует коэффициенту α на уровне 3–10 эл/ат, а коэффициенту δ — на уровне 15–50 эВ/ат. Немонотонность зависимости $V_a(P_s)$ позволяет объяснить разный вид вольт-амперных характеристик дуги на различных катодах при постоянной мощности подогрева и зависимость напряжения от мощности при постоянном токе.

Существует корреляция между значениями вольтова эквивалента теплового потока из плазмы на катод и напряжением на дуге. Максимальные значения вольтова эквивалента могут достигать половины значения падения напряжения на дуге.

Сопоставлены коэффициенты α и δ в вакуумных дугах с ДКП и с контрагированными катодными микропятнами. С учетом отличия коэффициентов α и δ можно говорить о наличии определенного соответствия параметров плазмы в дугах обоих типов.

БЛАГОДАРНОСТИ

Работа была поддержана Министерством науки и высшего образования Российской Федерации (Соглашение № 075-01129-23-00).

СПИСОК ЛИТЕРАТУРЫ

- Васин А И, Дороднов А М и Петросов В А 1979 Письма в ЖТФ 5 1499–1504
- Полищук В П, Сычев П Е, Шабашов В И и Ярцев И М 1986 Журнал технической физики 56 2233-2235
- Puchkarev V F and Chesnokov S M 1992 Journal of Physics D: Applied Physics 25 1760-1766
- 4. Polishchuk V P et al 2020 High Temperature 58 476-494
- 5. Кобайн Дж, Эккер Г, Фаррелл Дж, Гринвуд А и Харрис Л 1982 Вакуумные дуги (М.: Мир)
- Kajioka H 1997 Journal of Vacuum Science & Technology, A 15 2728
- Goedicke K, Scheffel B and Schiller S 1994 Surface and Coatings Technology 68-69 799-803
- 8. Metzner C, Scheffel B and Goedicke K 1996 Surface and Coatings Technology 86-87 769-775
- Richter P, Peter S, Filippov V, Flemming G and Kuhn M 1999 IEEE Transactions on Plasma Science 27 1079–1083
- Usmanov R A, Amirov R K, Gavrikov A V, Liziakin G D, Polistchook V P, Samoylov I S, Smirnov V P, Vorona N A and Yartsev I M 2018 *Physics of Plasmas* 25 063524
- Бронин С Я, Полищук В П, Сычев П Е, Шабашов В И и Ярцев И М 1993 Теплофизика высоких температур 31 29-35
- Батенин В М, Климовский И И, Полищук В П и Синельщиков В А 2003 Теплофизика высоких температур 41 670-678
- 13. Amirov R K, Antonov N, Vorona N A, Gavrikov A V, Liziakin G D, Polistchook V P, Samoylov I S, Smirnov V P, Usmanov R A and Yartsev I M 2015 Journal of Physics:

Conference Series 653 012164

- 14. Дороднов А М, Мубояджян С А, Помелов Я А и Струков Ю А 1981 Журнал прикладной механики и технической физики 35-41
- 15. Аксенов И И, Брень В Г, Коновалов И И, Кудрявцева Е Е, Падалка В Г, Сысоев Ю А и Хороших В М 1983 Теплофизика высоких температур 21 646-651
- 16. Несмеянов А Н 1961 Давление пара химических элементов (АН СССР)
- 17. Казенас Е К и Цветков Ю В 1997 Испарение оксидов (Наука М.)
- Василяк Л М, Васильев А И, Костюченко С В, Соколов Д В, Старцев А Ю и Кудрявцев Н Н 2010 Прикладная физика 3 18-23
- 19. Райзер Ю П 2009 Физика газового разряда (Долгопрудный, Интеллект)
- 20. Моргулис Н Д 1933 Успехи физических наук 13 58-83
- 21. Рохлин Г Н 1991 Разрядные источники света (Москва)
- 22. Уэймаус Дж 1977 Газоразрядные лампы (Энергия)
- 23. Daalder J 1981 Physica B+C 104 91–106
- Anders A and Yushkov G Y 2002 Journal of Applied Physics 91 4824–4832
- 25. Дороднов А М, Козлов Н П и Помелов Я А 1973 Теплофизика высоких температур 11 724-727
- Фоменко В С 1981 Эмиссионные свойства материалов. Справочник. (Наукова думка. Киев.)
- 27. Melnikov A D, Usmanov R A, Amirov R K, Antonov N N, Gavrikov A V, Liziakin G D, Polistchook V P and Smirnov V P 2020 Plasma Physics Reports 46 611-616
- Андерс А, Окс Е М, Юшков Г Ю, Савкин К П, Браун Я и Николаев А Г 2006 Журнал технической физики 76 57-61