Термическое расширение нестехиометрического карбида циркония при температурах до 3200 К

А. А. Васин, С. В. Петухов, М. А. Шейндлин и Т. В. Бгашева

Объединенный институт высоких температур РАН, Ижорская ул., 13, стр.2, Москва

125412, Россия

E-mail: sheindlin@yandex.ru

Статья поступила в редакцию 10 декабря 2020 г.

Аннотация. В работе изложен метод исследования теплового расширения карбида циркония при температурах вплоть до 3200 К, приведены соответствующие экспериментальные результаты. Измерения проведены со специально изготовленными образцами, отличающимися соотношением C/Zr. Обнаружено, что коэффициент теплового расширения образца с дефицитом углерода имеет более высокий коэффициент теплового расширения. https://doi.org/10.33849/2020201

1. ВВЕДЕНИЕ

Теплофизические свойства сверхтугоплавких карбидов, к которым относится и карбид циркония, представляют несомненный интерес для понимания поведения этих материалов при высоких температурах. Сверхтугоплавкие карбиды металлов IV и V групп — MeC_x обладают широкой областью гомогенности при $x \leq 1$ с вакансиями в углеродной подрешетке. Таким образом, термические свойства этих карбидов определяются не только температурой, но и параметром стехиометрии x [1].

Почти исчерпывающее собрание данных по тепловому расширению карбида циркония представлено в [2]. Здесь обращает на себя внимание то, что данные, особенно при высоких температурах, представлены для значений x в диапазоне около 0.85–1.0 и приводятся различными авторами только для одного состава.

Весьма немногочисленные данные, полученные при температуре около 1000 К, по зависимости термического коэффициента линейного расширения (ТКЛР) от степени субстехиометричности (отклонения x от единицы) не позволяют сделать однозначного вывода об изменении ТКЛР ZrC_x в области гомогенности. Работа [3], специально посвященная данному вопросу, не дает однозначного ответа на вопрос о поведении термического расширения в зависимости от соотношения C/Zr.

Карбид циркония относится к классу сверхтугоплавких карбидов, по последним данным [4] температура его конгруэнтного плавления составляет 3845 К. Таким образом, очевидно, что применение карбида циркония особенно актуально в аппаратах, работающих при экстремально высоких температурах. А что касается температурного диапазона измерений ТКЛР, то здесь основной набор данных относится к температурному диапазону до 2500 К. Наибольший уровень температуры (около 3000 К) был достигнут только в работе Ричардсона [5], где использовался метод рентгеновской дифракции — таким образом измерялась зависимость расширения от температуры для самой кристаллической решетки карбида циркония. Однако результаты этой работы являются противоречивыми в связи с тем, что измеренный параметр решетки указывал на соотношение C/Zr равное 0.75, что противоречило структуре синтезированного карбида, содержащего крупные чешуйки углерода. Таким образом, отнести эти данные к какому-то определенному составу вещества не представляется возможным.

В недавней работе [6] измерения теплового расширения карбида циркония были проведены до температуры 2850 К. Однако, никаких данных о соотношении металла и углерода в изучаемых образцах в [6] не приводится. Разброс значений ТКЛР в [6] при максимальных температурах довольно значительный и составляет 7 – 10 × 10^{-6} [K⁻¹], тогда как основная группа точек лежит вблизи 8×10^{-6} [K⁻¹].

Задачей настоящей работы явилось изучение теплового расширения карбида циркония в области предельно высоких температур и определение зависимости этой величины от соотношения металла и углерода в области гомогенности.

2. МЕТОД ИССЛЕДОВАНИЯ И АППАРАТУРА

Принципиальная схема эксперимента представлена на рисунке 1. Нагрев образца, представляющего собой диск диаметром около 8 мм и толщиной 0.5-0.7 мм, обеспечивался мощным дисковым лазером непрерывного действия. Для достижения дополнительной однородности распределения лазерного излучения в фокальном пятне излучение лазера проходило через специальный световод диаметром около 1 мм и фокусировалось в пятно, немного превышающее диаметр образца. Распределение плотности мощности в пятне нагрева было осесимметричным, а его неоднородность оценивалась с помощью набора диафрагм разного диаметра, устанавливаемых на место образца. Было установлено, что неоднородность плотности мощности в пятне не превышала 5%. Образец устанавливался в герметичную камеру и крепился в трехточечном графитовом держателе. Перед экспериментом камера вакуумировалась, а затем наполнялась гелием высокой чистоты. Эта процедура повторялась несколько раз для надежного удаления следов кислорода. Температура образца измерялась спектропирометром, при этом определение истинной температуры Т осуществлялось с помощью нелинейной подгонки измеренного спектра к функции Планка, а излучательная способность аппроксимировалась линейной функцией: $\epsilon(\lambda) = a\lambda + b$. В результате трехпараметрической подгонки определялись *T*, *a* и *b*.

Следует отметить, что использование лазерного нагрева позволило проводить эксперименты при температурах, заметно превышающих максимально достижимые ранее в стационарных измерениях теплового расширения. Эти температуры существенно превышают

Рисунок 1. Общая схема эксперимента.

и те, которые заявлены производителями даже наиболее совершенной коммерческой аппаратуры для высокотемпературной дилатометрии. Здесь максимальная температура определяется только термической устойчивостью самого образца и материала трехточечного держателя.

Очевидно, что для измерения собственно теплового расширения единственной возможностью является применение оптических методов. Наиболее удобной оказалась соответствующая фиксация расширения диска с помощью фотоматрицы высокого разрешения с применением оптики, проецирующей изображение диска так, чтобы увеличение имело оптимальный размер.

В качестве такой регистрирующей системы использовалась стандартная фотокамера со CMOS матрицей APS-C (23.5 x 15.6 мм) с разрешением 6000х4000 пикселей. При увеличении оптической системы 1:1,5 изображение диска почти полностью совпадет с высотой кадра. При этом, даже используя стандартные программы обработки изображения, можно определять расширение материала в любом направлении, что особенно важно для анизотропных материалов. Предварительные эксперименты показали, что, по ряду практических причин, использование изображения образца в собственном свечении оказалось предпочтительнее.

Для того, чтобы обеспечить максимальную точность измерений, используя всю «многопиксельную» информацию, получаемую с помощью фотокамеры, был разработан специальный алгоритм обработки изображений, который позволяет найти отношение линейных размеров изображений двух объектов. Алгоритм обработки основан на том, что изображения представлены в монохромном растровом формате. Также предполагается геометрическое подобие изображенных объектов. На первом изображении вручную выбирается область обработки произвольной формы, содержащая искомый объект, в данном случае это видимые границы образца.

Количество пикселей первого изображения, вошедших в область обработки, обозначим как N, а координаты их центров — (x_i, y_i) , где i меняется 1 до N. Здесь фон считается однотонным, а изображения геометрически подобными, второе изображение получится из первого аффинным преобразованием:

$$\begin{pmatrix} x'\\y' \end{pmatrix} = \begin{pmatrix} d_x\\d_y \end{pmatrix} + \begin{pmatrix} a & b\\-b & a \end{pmatrix} \begin{pmatrix} x'\\y' \end{pmatrix}.$$
 (1)

Величины d_x и d_y в (1) определяют возможное общее смещение второго изображения относительно пер-

вого. Каждой точке (x_i, y_i) области обработки будет соответствовать точка (x'_i, y'_i) второго изображения. Значения интенсивности изображения в этих точках g(x, y)устанавливаются достаточно близкими. В таком случае корреляционная функция

$$c = \frac{\sum_{i} (g_1(x_i, y_i) - \bar{g}_1) (g_2(x'_i, y'_i) - \bar{g}_2)}{\sqrt{\sum_{i} (g_1(x_i, y_i) - \bar{g}_1)^2 \sum_{i} (g_2(x'_i, y'_i) - \bar{g}_2)^2}}.$$
 (2)

будет равна единице. Здесь $g_1(x, y)$ и $g_2(x, y)$ — значения интенсивности в точке с координатами (x, y) первого и второго изображения соответственно, а \bar{g}_1 и \bar{g}_2 — средние значения $g_1(x_i, y_i)$ и $g_2(x'_i, y'_i)$ по всем *i*. Задача сводится к поиску такого аффинного преобразования вида (1), при котором значение корреляционной функции максимально. Такой поиск может быть осуществлен методом наискорейшего спуска. После нахождения значений a, b, d_x и d_y , легко найти отношение линейных размеров изображений

$$k = \frac{L_2}{L_1} = \sqrt{\left| \begin{array}{c} a & b \\ -b & a \end{array} \right|}.$$
 (3)

В качестве первого изображения использовалась фотография образца при комнатной температуре, в качестве второго — фотография образца, нагретого до температуры *T*. Относительное удлинение вычислялось по формуле:

$$\frac{L_2 - L_1}{L_1} = k - 1, (4)$$

а температурный коэффициент линейного расширения рассчитывался как:

$$\alpha = \frac{L_2 - L_1}{L_1(T - 300K)} = \frac{k - 1}{T - 300K}.$$
(5)

Каждая фотография представляет собой три набора значений интенсивности по пикселям: для красного r(x, y), зеленого g(x, y) и синего b(x, y) каналов соответственно. Для измерений использовался только канал зеленого цвета. Это связано с тем, что количество зеленых субпикселей на матрице фотокамеры вдвое больше, чем синих или красных. Поэтому уровень шумов в зеленом канале меньше, чем в остальных.

3. ОБРАЗЦЫ ДЛЯ ИССЛЕДОВАНИЯ

Образцы из карбида циркония были изготовлены путем высокотемпературного спекания таблеток, предварительно спрессованных из порошка, полученного, в свою очередь, с помощью CBC-синтеза из порошков циркония и сажи. Для получения как можно более плотных образцов синтезированный порошок дополнительно измельчался, и перед прессованием в него добавлялась временная технологическая связка, которая полностью удалялась в процессе обжига. Изготовленные образцы представляли собой таблетки диаметром 8 мм. Далее образец для исследования толщиной около 1 мм вырезался из таблетки алмазным диском. В связи с тем, что практически все измерения теплового расширения кар-

Таблица 1. Состав образов карбида циркония.

	С (масс%)	О (масс%)	N (масс%)	C/Zr
$\operatorname{ZrC}_{0.91}$	10.63	0.36	0.30	0.91 ± 0.03 0.71 + 0.02
$\mathrm{ZrC}_{0.71}$	8.41	1.70	0.30	$0.71 {\pm} 0.0$

бида циркония, сделанные ранее, были проведены на образцах состава близкого к стехиометрическому, изготовленные образцы имели составы $\operatorname{ZrC}_{0.91}$ и $\operatorname{ZrC}_{0.71}$. Такие соотношения C/Zr отвечали почти граничным составам области гомогенности ZrC_x . Что касается выбранного состава $\operatorname{ZrC}_{0.91}$ вместо стехиометрического, то дальнейшее приближение к стехиометрическому составу приводило бы к неизбежному появлению следов свободного углерода, что, кроме влияния на свойства материала, приводило бы к эвтектическому плавлению при температуре уже около 3150 K [4].

Предложенная технология получения образцов из карбида циркония позволяла получить материал с плотностью около 85% от теоретической при возможности управления составом материала в рамках единого технологического подхода. Разработанный метод получения образцов обеспечивал также минимально возможное присутствие кислорода и азота в полученных таблетках карбида циркония. Исходный состав образов по результатам проведенного анализа приведен в таблице 1.

Углерод в полученных образцах определялся с помощью метода «динамической вспышки» на элементном анализаторе EA 1112 («Thermo Finigan», Италия). Кислород и азот определялись методом восстановительного плавления на элементном анализаторе ONH-2000 («Eltra GmbH», Германия).

4. РЕЗУЛЬТАТЫ ИЗМЕРЕНИЙ

Первоначально метод и аппаратура были протестированы на образце, изготовленном из изотропного графита марки РОСО AXM-5Q, который обычно используется как референсный при измерении ряда теплофизических свойств при высоких температурах. Результаты этих измерений приведены на рисунке 2.

Рисунок 2. Температурный коэффициент линейного расширения графита РОСО.

Результаты измерений на рисунке 2 показаны в сравнении с измерениями, выполненными в [7] также применительно к графиту марки РОСО АХМ-5. Некоторое расхождение данных (около 10%) по коэффициенту теплового расширения, является вполне удовлетворительным, в частности, с учетом диапазона температур.

Рисунок 3. Относительное удлинение: $ZrC_{0.71}$ и $ZrC_{0.91}$ – настоящая работа, 1 - [5], 2 - [8], 3 - [9], 4 - [10], 5 - [11].

На рисунке 3 приведены полученные данные по относительному удлинению карбида циркония двух составов. Это первичные экспериментальные данные, поэтому здесь сравнение с результатами других авторов наиболее показательно. Если данные для образца $\operatorname{ZrC}_{0.91}$, с составом близким к стехиометрическому, достаточно хорошо согласуются с работами [5], [10] то данные по составу $\operatorname{ZrC}_{0.71}$ лежат несколько выше. Значения коэффициента расширения, вычисленные по данным относительного удлинения, показывают слабую температурную зависимость для $\operatorname{ZrC}_{0.91}$: $\alpha(\operatorname{ZrC}_{0.91}) = (8.56 + 5.2 \times 10^{-4}T) \times 10^{-6} [\mathrm{K}^{-1}]$ и постоянное значение для второго состава: $\alpha(\operatorname{ZrC}_{0.71}) = 13.3 \times 10^{-6} [\mathrm{K}^{-1}]$ в указанном диапазоне температур (рисунок 3).

Результаты по коэффициенту теплового расширения для $\operatorname{ZrC}_{0.91}$ можно сравнить с имеющимися данными [2] для составов, близких к стехиометрическому. Здесь, в области около 3000 К значения ТКЛР составляют порядка $10 \times 10^{-6} [\mathrm{K}^{-1}]$, что находится в разумном соответствии с имеющимися немногочисленными данными в этой области температур. Данные работы [6], где приводится только величина ТКЛР, дают значение меньше на 20–30%. Значительно более высокое значение ТКЛР, полученное нами для образца $\operatorname{ZrC}_{0.71}$, выглядит вполне разумно, так как общий тренд изменения ТКЛР с увеличением доли металла указывает на его рост с уменьшением параметра x.

5. ОЦЕНКА ПОГРЕШНОСТИ ИЗМЕРЕНИЙ

Погрешность определения относительного удлинения оценивалась исходя из предположения, что границы изображения определяются с точностью до 1 пикселя. В таком случае относительная погрешность определения диаметра составляет $\epsilon_d = 2/d$, где d — диаметр изображения в пикселях. В данном случае $d \approx 2500$, значит $\epsilon_d \approx 0.08\%$. Абсолютная погрешность определения отношения размеров в таком случае будет $\Delta k = \sqrt{2}k\epsilon_d$. Поскольку во всех экспериментах значение k близко к единице, можем считать, что отношение диаметров известно с точностью до $\Delta k = \sqrt{2}\epsilon_d \approx 0.0011$. Поскольку относительное удлинение $\frac{\Delta L}{L} = k - 1$, погрешность его определения составляет также 0.0011. Здесь следует отметить, что в действительности, согласно методике обработки изображения, изложенной выше, сегмент, в котором анализировалось изображение, включал около 500 пикселей. Таким образом, учитывая статистический характер определения величины k, погрешность определения удлинения образца должна быть уменьшена в $\sqrt{500}$ раз, то есть составит 0.005%.

Погрешность измерения температуры определяется электронным шумом спектропирометра, а также неопределенностью температуры модели черного тела, с помощью которой производилась калибровка спектропирометра. В диапазоне температур от 1500 до 3200 К она не превышает 10 К.

БЛАГОДАРНОСТИ

Исследование выполнено при финансовой поддержке РФФИ и Госкорпорации «Росатом» в рамках научного проекта № 20-21-00115.

СПИСОК ЛИТЕРАТУРЫ

- Андриевский РА, Ланин АГ и Рымашевский ГА 1974 Прочность тугоплавких соединений. (Металлургия) с. 232
- 2. Jackson H F and Lee W E 2012 Properties and characteristics of ZrC Comprehensive Nuclear Materials (Elsevier) pp 339-372
- Букатов В Г, Рымашевский Г А и Федоров В Б 1971 Неорганические материалы 7 519
- Sheindlin M, Falyakhov T, Petukhov S, Valyano G and Vasin A 2018 Adv. Appl. Ceram. 117 48-55
- 5. Richardson J H 1965 J. Am. Ceram. Soc. 48 487-499
- 6. Костановский А В, Зеодинов А В, Костановская М Е и Пронкин А А 2018 *ТВТ* 56 956–958
- Taylor R and Groot H 1980 High Temp. High Pressures 12 147-160
- 8. Houska C R 1964 J. Phys. Chem. Solids 25 359-366
- 9. Фридлендер Б А и Нешпор В С 1976 *ТВТ* **14** 953-956
- Samsonov G V, Paderno I B and Panasiuk A D 1966 Revue Int. Hautes Temp. Refract. 3 179–184
- 11. Aronson S, Cisney E and Auskern A B 1966 J. Am. Ceram. Soc. 49 456